Salivary Cystatin-L2-like of Varroa destructor Causes Lower Metabolism Activity and Abnormal Development in Apis mellifera Pupae

Author:

Zhou He1,Duan Xinle12,Sun Chaoxia1,Huang Hongji1,Yang Mei1,Huang Shaokang12ORCID,Li Jianghong12

Affiliation:

1. College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. Fujian Honey Bee Biology Observation Station, Ministry of Agriculture and Rural Affairs, Fuzhou 350002, China

Abstract

Varroa destructor injects a salivary secretion into honeybees during their feeding process. The salivary secretion plays a vital role in mite–bee interactions and is the main cause of honeybee illness. To determine the biological function of cystatin-L2-like, one of the components of V. destructor salivary secretion, its gene expression in mites during the reproductive phase and dispersal phase was quantified using RT-qPCR, respectively. Moreover, the E. coli-expressed and -purified cystatin was injected into the white-eyed honeybee pupae, and its effects on the survival, the weight of the newly emerged bee, and the transcriptome were determined. The results showed that cystatin was significantly upregulated in mites during the reproductive phase. Cystatin significantly shortened the lifespan of pupae and decreased the weight of the newly emerged bees. Transcriptome sequencing showed that cystatin upregulated 1496 genes and downregulated 1483 genes in pupae. These genes were mainly enriched in ATP synthesis, the mitochondrial respiratory chain, and cuticle structure and function. Cystatin comprehensively downregulated the metabolism of carbohydrates, fatty acids, and amino acids, and energy production in the pupae. The downregulation of metabolic activity could save more nutrients and energy for V. destructor, helping it to maximize its reproduction potential, implying that the mite could manipulate the metabolism of host bees through the injected salivary secretion. The results provide new insights into mite–bee interactions, providing a basis for related studies and applications.

Funder

Science and Technology Innovation Special Fund Project of Fujian Agriculture and Forestry University

Special Foundation of Investigation on Basic Resources of the Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3