The salivary gland transcriptome of Varroa destructor reveals suitable targets for RNAi‐based mite control

Author:

Becchimanzi Andrea12ORCID,Cacace Alfonso1,Parziale Martina13,De Leva Giovanna1,Iacopino Sergio3,Jesu Giovanni1ORCID,Di Lelio Ilaria12,Stillittano Virgilio45,Caprio Emilio1ORCID,Pennacchio Francesco12

Affiliation:

1. Department of Agricultural Sciences University of Naples ‘Federico II’ Naples Italy

2. BAT Center—Interuniversity Center for Studies on Bioinspired Agro‐Environmental Technology University of Naples ‘Federico II’ Naples Italy

3. Arterra Bioscience Naples Italy

4. Istituto Zooprofilattico Sperimentale del Lazio e della Toscana Rome Italy

5. School of Specialization in Food Science University of Rome Tor Vergata Rome Italy

Abstract

AbstractThe mite Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) has a dramatic impact on beekeeping and is one of the main causes of honey bee colony losses. This ectoparasite feeds on honey bees' liquid tissues, through a wound created on the host integument, determining weight loss and a reduction of lifespan, as well as the transmission of viral pathogens. However, despite its importance, the mite feeding strategy and the host regulation role by the salivary secretions have been poorly explored. Here, we contribute to fill this gap by identifying the salivary components of V. destructor, to study their functional importance for mite feeding and survival. The differential expression analysis identified 30 salivary gland genes encoding putatively secreted proteins, among which only 15 were found to be functionally annotated. These latter include proteins with putative anti‐bacterial, anti‐fungal, cytolytic, digestive and immunosuppressive function. The three most highly transcribed genes, coding for a chitin‐binding domain protein, a Kazal domain serine protease inhibitor and a papain‐like cysteine protease were selected to study their functional importance by reverse genetics. Knockdown (90%–99%) by RNA interference (RNAi) of the transcript of a chitin‐binding domain protein, likely interfering with the immune reaction to facilitate mite feeding, was associated with a 40%–50% decrease of mite survival. This work expands our knowledge of the host regulation and nutritional exploitation strategies adopted by ectoparasites of arthropods and allows the identification of potential targets for RNAi, paving the way towards the development of new strategies for Varroa mite control.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3