Abstract
Cellular automata (CA) are efficient and effective numerical tools for modeling various phenomena and processes, e.g., microstructure evolution in plastic working processes. In many cases, the analysis of phenomena can be carried out only in a limited space and on representative volume. This limitation determines the geometry of CA space hence boundary conditions are very important issues in modeling. The paper discusses different boundary conditions that can be applied to modeling. Taking into account the transformation of the modeling space, the model should allow the selection of boundary conditions. The modeling of certain phenomena and processes is directly related to changes in the geometry of a representative volume and therefore may require changes or reorganization of the modeled CA space. Four reorganization options are presented: halving, cutting and bonding, doubling, and straightening. A choice of boundary conditions may depend on particular space reorganization as used for the modeling of microstructure evolution. A set of decision rules for selecting space reorganization options taking into account the changes of CA shape and sizes is also presented. The modeling of flat and shape rolling processes utilizing some of the described techniques is shown.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献