3D Model of Carbon Diffusion during Diffusional Phase Transformations

Author:

Łach Łukasz1ORCID,Svyetlichnyy Dmytro1ORCID

Affiliation:

1. AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, al. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

The microstructure plays a crucial role in determining the properties of metallic materials, in terms of both their strength and functionality in various conditions. In the context of the formation of microstructure, phase transformations that occur in materials are highly significant. These are processes during which the structure of a material undergoes changes, most commonly as a result of variations in temperature, pressure, or chemical composition. The study of phase transformations is a broad and rapidly evolving research area that encompasses both experimental investigations and modeling studies. A foundational understanding of carbon diffusion and phase transformations in materials science is essential for comprehending the behavior of materials under different conditions. This understanding forms the basis for the development and optimization of materials with desired properties. The aim of this paper is to create a three-dimensional model for carbon diffusion in the context of modeling diffusional phase transformations occurring in carbon steels. The proposed model relies on the utilization of the LBM (Lattice Boltzmann Method) and CUDA architecture. The resultant carbon diffusion model is intricately linked with a microstructure evolution model grounded in FCA (Frontal Cellular Automata). This manuscript provides a concise overview of the LBM and the FCA method. It outlines the structure of the developed three-dimensional model for carbon diffusion, details its correlation with the microstructure evolution model, and presents the developed algorithm for simulating carbon diffusion. Demonstrative examples of simulation results, illustrating the growth of the emerging phase and affected by various model parameters within particular planes of the 3D calculation domain, are also presented.

Funder

Ministry of Science and Higher Education, Poland

Polish National Science Centre

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3