Microstructure–property relation and machine learning prediction of hole expansion capacity of high-strength steels

Author:

Li Wei,Vittorietti Martina,Jongbloed Geurt,Sietsma Jilt

Abstract

Abstract The relationship between microstructure features and mechanical properties plays an important role in the design of materials and improvement of properties. Hole expansion capacity plays a fundamental role in defining the formability of metal sheets. Due to the complexity of the experimental procedure of testing hole expansion capacity, where many influencing factors contribute to the resulting values, the relationship between microstructure features and hole expansion capacity and the complexity of this relation is not yet fully understood. In the present study, an experimental dataset containing the phase constituents of 55 microstructures as well as corresponding properties, such as hole expansion capacity and yield strength, is collected from the literature. Statistical analysis of these data is conducted with the focus on hole expansion capacity in relation to individual phases, combinations of phases and number of phases. In addition, different machine learning methods contribute to the prediction of hole expansion capacity based on both phase fractions and chemical content. Deep learning gives the best prediction accuracy of hole expansion capacity based on phase fractions and chemical composition. Meanwhile, the influence of different microstructure features on hole expansion capacity is revealed. Graphical abstract

Funder

Materials innovation institute

Technische Universiteit Delft

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3