Abstract
Morphing aeronautical systems may be used for a number of aims, ranging from improving performance in specific flight conditions, to keeping the optimal efficiency over a certain parameters domain instead of confining it to a single point, extending the flight envelope, and so on. An almost trivial statement is that traditional skeleton architectures cannot be held as a structure modified from being rigid to deformable. That passage is not simple, as a structure that is able to be modified shall be designed and constructed to face those new requirements. What is not marginal, is that the new configurations can lead to some peculiar problems for both the morphing and the standard, supporting, elements. In their own nature, in fact, adaptive systems are designed to contain all the parts within the original geometry, without any “external adjoint”, such as nacelles or others. Stress and strain distribution may vary a lot with respect to usual structures and some particular modifications are required. Sometimes, it happens that the structural behavior does not match with the common experience and some specific adjustment shall be done to overcome the problem. What is reported in this paper is a study concerning the adaptation of the structural architecture, used to host a winglet morphing system, to make it accomplish the original requirements, i.e., allow the deformation values to be under the safety threshold. When facing that problem, an uncommon behavior of the finite element (FE) solver has been met: the safety factors appear to be tremendously dependent on the mesh size, so as to raise serious questions about the actual expected value, relevant for the most severe load conditions. On the other side, such singularities are more and more confined into single points (or single lines), as the mesh refines, so to evidence somehow the numerical effect behind those results. On the other side, standard engineering local methods to reduce the abovementioned strain peaks seem to work very well in re-distributing the stress and strain excesses to the whole system domain. The work does not intend to give an answer to the presented problem, being instead focused on describing its possible causes and its evident effects. Further work is necessary to detect the original source of such inconsistencies, and propose and test operative solutions. That will be the subject of the next steps of the ongoing research.
Funder
Clean Sky 2 Joint Undertaking
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference25 articles.
1. AIRGREEN2 - Clean Sky 2 Programme: Adaptive Wing Technology Maturation, Challenges and Perspectives
2. The development of morphing aircraft benefit assessment;Peter,2018
3. Adaptive compliant trailing edge flight experiment;RC Soar. Digest,2014
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献