Identifying Defects without a priori Knowledge in a Room-Temperature Semiconductor Detector Using Physics Inspired Machine Learning Model

Author:

Banerjee Srutarshi1,Rodrigues Miesher2,Ballester Manuel1ORCID,Vija Alexander Hans2ORCID,Katsaggelos Aggelos1

Affiliation:

1. Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA

2. Siemens Medical Solutions USA, Inc., Hoffmann Estates, IL 60192, USA

Abstract

Room-temperature semiconductor radiation detectors (RTSD) such as CdZnTe are popular in Computed Tomography (CT) imaging and other applications. Transport properties and material defects with respect to electron and hole transport often need to be characterized, which is a labor intensive process. However, these defects often vary from one RTSD to another and are not known a priori during characterization of the material. In recent years, physics-inspired machine learning (PI-ML) models have been developed for the RTSDs which have the ability to characterize the defects in a RTSD by discretizing it volumetrically. These learning models capture the heterogeneity of the defects in the RTSD—which arises due to the fabrication process and the energy bands of elements in the RTSD. In those models, the different defects of RTSD—trapping, detrapping and recombination for electrons and holes—are present. However, these defects are often unknown. In this work, we show the capabilities of a PI-ML model which has been developed considering all the material defects to identify certain defects which are present (or absent). Additionally, these models can identify the defects over the volume of the RTSD in a discretized manner.

Funder

Siemens Medical Solutions Inc.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3