Characterization of the Uniformity of High-Flux CdZnTe Material

Author:

Veale Matthew CharlesORCID,Booker Paul,Cross Simon,Hart Matthew David,Jowitt LydiaORCID,Lipp JohnORCID,Schneider Andreas,Seller Paul,Wheater Rhian Mair,Wilson Matthew David,Hansson Conny Christoffer Tobias,Iniewski Krzysztof,Marthandam Pramodha,Prekas Georgios

Abstract

Since the late 2000s, the availability of high-quality cadmium zinc telluride (CdZnTe) has greatly increased. The excellent spectroscopic performance of this material has enabled the development of detectors with volumes exceeding 1 cm3 for use in the detection of nuclear materials. CdZnTe is also of great interest to the photon science community for applications in X-ray imaging cameras at synchrotron light sources and free electron lasers. Historically, spatial variations in the crystal properties and temporal instabilities under high-intensity irradiation has limited the use of CdZnTe detectors in these applications. Recently, Redlen Technologies have developed high-flux-capable CdZnTe material (HF-CdZnTe), which promises improved spatial and temporal stability. In this paper, the results of the characterization of 10 HF-CdZnTe detectors with dimensions of 20.35 mm × 20.45 mm × 2.00 mm are presented. Each sensor has 80 × 80 pixels on a 250-μm pitch and were flip-chip-bonded to the STFC HEXITEC ASIC. These devices show excellent spectroscopic performance at room temperature, with an average Full Width at Half Maximum (FWHM) of 0.83 keV measured at 59.54 keV. The effect of tellurium inclusions in these devices was found to be negligible; however, some detectors did show significant concentrations of scratches and dislocation walls. An investigation of the detector stability over 12 h of continuous operation showed negligible changes in performance.

Funder

Science and Technology Facilities Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3