Impact of Wide-Bandgap Technology on Renewable Energy and Smart-Grid Power Conversion Applications Including Storage

Author:

Castellazzi ,Gurpinar ,Wang ,Suliman Hussein ,Garcia Fernandez

Abstract

Wide-bandgap (WBG) semiconductor devices are making their way into large-volume applications, including pivotal domains of societal infrastructure such as sustainable energy generation and conversion. Presented for a long time mainly as a synonym of high-temperature electronics, hands-on experience has highlighted a number of gains that can be drawn from this technology even when used as a straightforward drop-in substitute of silicon in established applications and field-proven designs. Incremental in nature, these gains enable interesting progress beyond state-of-the-art forms, which, though not corresponding to the full exploitation of the potential of this technology, are oftentimes sufficient to justify its adoption. With particular reference to renewable energy power conversion and solid-state transformation, in the context of transport applications and incorporating a storage device, this paper reports on the understanding generated over the past few years and points out some specifically tailored technology and circuit design requirements to ensure overall beneficial impact of the adoption of WBG technology.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaled Projections of Empirically Verified Hybrid Edge Terminated Vertical GaN Diodes to 20 kV;2023 IEEE 10th Workshop on Wide Bandgap Power Devices & Applications (WiPDA);2023-12-04

2. 1.7-kV vertical GaN p-n diode with triple-zone graded junction termination extension formed by ion-implantation;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2023-12

3. Current Sensor Integration Issues with Wide-Bandgap Power Converters;Sensors;2023-07-18

4. State-of-the-Art 800 V Electric Drive Systems: Inverter–Machine Codesign for Energy Efficiency Optimization;Electronics;2023-07-13

5. 3.3 kV Low-Inductance Full SiC Power Module;2023 IEEE Applied Power Electronics Conference and Exposition (APEC);2023-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3