Author:
López-Munoz ,García-Cascales ,Velasco ,Otón-Martínez
Abstract
Unexpected detonation of granular solid energetic materials is a key safety issue in the propellants manufacturing industry. In this work, a model developed for the characterization of the early stages of the detonation process of granular solid energetic materials is presented. The model relies on a two-phase approach which considers the conservation equations of mass, momentum, and energy and constitutive relations for mass generation, gas-solid particle interaction, interphase heat transfer, and particle-particle stress. The work considers an extension of approximated Riemann solvers and Total Variation Diminishing (TVD) schemes to the solid phase for the numerical integration of the problem. The results obtained with this model show a good agreement with data available in the literature and confirm the potential of the numerical schemes applied to this type of model. The results also permit to assess the effectiveness of different numerical schemes to predict the early stages of this transient combustion process.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference32 articles.
1. Propellants and Explosives. Thermochemical Apects of Combustion;Kubota,2002
2. Theory of Flame Front Propagation in Porous Propellant Charges under Confinement
3. Transient Combustion in Granular Propellant Beds. Part I. Theoretical Modeling and Numerical Solution of Transient Combustion Processes in Mobile Granular Propellant Beds;Koo,1977
4. Modelling of two-phase transient flow and combustion of granular propellants
5. Numerical computation of multi-phase fluid flow and heat transfer;Spalding,1980
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献