Abstract
Bali is known as one of the region’s most popular and long-established mass tourism destinations. However, the tourism sector in Indonesia saw a drastic decrease in the number of local and foreign tourists due to COVID-19. The objective of this study is to analyze the factors that are related to customer satisfaction post-COVID-19 in Bali’s resorts. The data consist of a total of 7370 hotel reviews collected from Google Travel. Text mining was used to conduct a frequency analysis to determine which attributes were frequently mentioned. Additionally, semantic network analysis was used to analyze customer experiences and satisfaction in Bali resorts. As a result, the top 88 keywords were divided into five clusters such as “Location”, “Health Protocol”, “Destination Resort”, “Value”, and “F&B”. The first quantitative analysis, factor analysis, shows there are 18 words out of 88 words related to six different clusters. Furthermore, the absolute value result of the linear regression analysis indicated that intangible service is affecting customer satisfaction negatively. As a result of the factor analysis, the two aspects that are related to the intangible service, “hospitality” and “staff”, are considered to be the most important aspects of resorts and should be improved in order to increase customer satisfaction.
Funder
National Research Foundation of Korea
Subject
General Business, Management and Accounting
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献