Neural-Network Quantum States for Spin-1 Systems: Spin-Basis and Parameterization Effects on Compactness of Representations

Author:

Pei Michael Y.ORCID,Clark Stephen R.ORCID

Abstract

Neural network quantum states (NQS) have been widely applied to spin-1/2 systems, where they have proven to be highly effective. The application to systems with larger on-site dimension, such as spin-1 or bosonic systems, has been explored less and predominantly using spin-1/2 Restricted Boltzmann Machines (RBMs) with a one-hot/unary encoding. Here, we propose a more direct generalization of RBMs for spin-1 that retains the key properties of the standard spin-1/2 RBM, specifically trivial product states representations, labeling freedom for the visible variables and gauge equivalence to the tensor network formulation. To test this new approach, we present variational Monte Carlo (VMC) calculations for the spin-1 anti-ferromagnetic Heisenberg (AFH) model and benchmark it against the one-hot/unary encoded RBM demonstrating that it achieves the same accuracy with substantially fewer variational parameters. Furthermore, we investigate how the hidden unit complexity of NQS depend on the local single-spin basis used. Exploiting the tensor network version of our RBM we construct an analytic NQS representation of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state in the xyz spin-1 basis using only M=2N hidden units, compared to M∼O(N2) required in the Sz basis. Additional VMC calculations provide strong evidence that the AKLT state in fact possesses an exact compact NQS representation in the xyz basis with only M=N hidden units. These insights help to further unravel how to most effectively adapt the NQS framework for more complex quantum systems.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liouville-space neural network representation of density matrices;Physical Review A;2024-06-14

2. Boltzmann machines and quantum many-body problems;Journal of Physics: Condensed Matter;2023-11-10

3. Compact neural-network quantum state representations of Jastrow and stabilizer states;Journal of Physics A: Mathematical and Theoretical;2021-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3