Compact neural-network quantum state representations of Jastrow and stabilizer states

Author:

Pei Michael YORCID,Clark Stephen RORCID

Abstract

Abstract Neural-network quantum states (NQSs) have become a powerful tool in many-body physics. Of the numerous possible architectures in which neural-networks can encode amplitudes of quantum states the simplicity of the complex restricted Boltzmann machine (RBM) has proven especially useful for both numerical and analytical studies. In particular devising exact NQS representations for important classes of states, like Jastrow and stabilizer states, has provided useful clues into the strengths and limitations of the RBM based NQS. However, current constructions for a system of N spins generate NQS with MO(N 2) hidden units that are very sparsely connected. This makes them rather atypical NQS compared to those commonly generated by numerical optimisation. Here we focus on compact NQS, denoting NQS with a hidden unit density α = M/N ⩽ 1 but with system-extensive hidden-visible unit connectivity. By unifying Jastrow and stabilizer states we introduce a new exact representation that requires at most M = N − 1 hidden units, illustrating how highly expressive α ⩽ 1 can be. Owing to their structural similarity to numerical NQS solutions our result provides useful insights and could pave the way for more families of quantum states to be represented exactly by compact NQS.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Mathematical Physics,Modeling and Simulation,Statistics and Probability,Statistical and Nonlinear Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3