Abstract
While pendulums have been around for millennia and have even managed to swing their way into undergraduate curricula, they still offer a breadth of complex dynamics to which some has still yet to have been untapped. To probe into the dynamics, we developed a computational fluid dynamics (CFD) model of a pendulum using the open-source fluid-structure interaction (FSI) software, IB2d. Beyond analyzing the angular displacements, speeds, and forces attained from the FSI model alone, we compared its dynamics to the canonical damped pendulum ordinary differential equation (ODE) model that is familiar to students. We only observed qualitative agreement after a few oscillation cycles, suggesting that there is enhanced fluid drag during our setup’s initial swing, not captured by the ODE’s linearly-proportional-velocity damping term, which arises from the Stokes Drag Law. Moreover, we were also able to investigate what otherwise could not have been explored using the ODE model, that is, the fluid’s response to a swinging pendulum—the system’s underlying fluid dynamics.
Funder
National Science Foundation
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics
Reference84 articles.
1. Pendulum Seismometers
2. China: Its History and Culture;Morton,2005
3. Time for Science Education: How Teaching the History and Philosophy of Pendulum Motion Can Contribute to Science Literacy;Matthews,2000
4. Experimental stone-cutting with the Mycenaean pendulum saw
5. Huygens's clocks
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献