Flow in Fractured Porous Media Modeled in Closed-Form: Augmentation of Prior Solution and Side-Stepping Inconvenient Branch Cut Locations

Author:

Weijermars Ruud,Khanal Aadi

Abstract

Carefully chosen complex variable formulations can solve flow in fractured porous media. Such a calculus approach is attractive, because the gridless method allows for fast, high-resolution model results. Previously developed complex potentials to describe flow in porous media with discrete heterogeneities such as natural fractures can be modified to expand the accuracy of the solution range. The prior solution became increasingly inaccurate for flows with fractures oriented at larger angles with respect to the far-field flow. The modified solution, presented here, based on complex analysis methods (CAM), removes the limitation of the earlier solution. Benefits of the CAM model are (1) infinite resolution, and (2) speed of use, as no gridding is required. Being gridless and meshless, the CAM model is computationally faster than integration methods based on solutions across discrete volumes. However, branch cut effects may occur in impractical locations due to mathematical singularities. This paper demonstrates how the augmented formulation corrects physically unfeasible refraction of streamlines across high-permeability bands (natural fractures) oriented at high angles with respect to a far-field flow. The current solution is an important repair. An application shows how a drained rock volume in hydraulically fractured hydrocarbon wells will be affected by the presence of natural fractures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3