High-Resolution Numerical Modeling of Complex and Irregular Fracture Patterns in Shale-Gas Reservoirs and Tight Gas Reservoirs

Author:

Olorode O.M.. M.1,Freeman C.M.. M.1,Moridis G.J.. J.2,Blasingame T.A.. A.1

Affiliation:

1. Texas A&M University

2. Lawrence Berkeley National Laboratory

Abstract

Summary Various models featuring horizontal wells with multiple fractures have been proposed to characterize flow behavior over time in tight gas systems and shale-gas systems. Currently, little is known about the effects of nonideal fracture patterns and coupled primary-/secondary-fracture interactions on reservoir performance in unconventional gas reservoirs. We developed a 3D Voronoi mesh-generation application that provides the flexibility to accurately represent various complex and irregular fracture patterns. We also developed a numerical simulator of gas flow through tight porous media, and used several Voronoi grids to assess the potential performance of such irregular fractures on gas production from unconventional gas reservoirs. Our simulations involved up to a half-million cells, and we considered production periods that are orders of magnitude longer than the expected productive life of wells and reservoirs. Our aim was to describe a wide range of flow regimes that can be observed in irregular fracture patterns, and to fully assess even nuances in flow behavior. We investigated coupled primary/secondary fractures, with multiple/vertical hydraulic fractures intersecting horizontal secondary "stress-release" fractures. We studied irregular fracture patterns to show the effect of fracture angularity and nonplanar fracture configurations on production. The results indicate that the presence of high-conductivity secondary fractures results in the highest increase in production, whereas, contrary to expectations, strictly planar and orthogonal fractures yield better production performance than nonplanar and nonorthogonal fractures with equivalent propped-fracture lengths.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3