3D LiDAR-Based Precision Vehicle Localization with Movable Region Constraints

Author:

Hsu Chih-Ming,Shiu Chung-Wei

Abstract

This paper discusses a high-performance similarity measurement method based on known map information named the cross mean absolute difference (CMAD) method. Applying the conventional normalized cross-correlation (NCC) feature registration method requires sufficient numbers of feature points, which must also exhibit near-normal distribution. However, Light Detection and Ranging (LiDAR) ranging point cloud data scanned and collected on-site are scarce and do not fulfill near-normal distribution. Consequently, considerable localization errors occur when NCC features are registered with map features. Thus, the CMAD method was proposed to effectively improve the NCC algorithm and localization accuracy. Because uncertainties in localization sensors cause deviations in the localization processes, drivable moving regions (DMRs) were established to restrict the range of location searches, filter out unreasonable trajectories, and improve localization speed and performance. An error comparison was conducted between the localization results of the window-based, DMR–CMAD, and DMR–NCC methods, as well as those of the simultaneous localization and mapping methods. The DMR–CMAD method did not differ considerably from the window-based method in its accuracy: the root mean square error in the indoor experiment was no higher than 10 cm, and that of the outdoor experiment was 10–30 cm. Additionally, the DMR–CMAD method was the least time-consuming of the three methods, and the DMR–NCC generated more localization errors and required more localization time than the other two methods. Finally, the DMR–CMAD algorithm was employed for the successful on-site instant localization of a car.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3