Deep Learning Method on Target Echo Signal Recognition for Obscurant Penetrating Lidar Detection in Degraded Visual Environments

Author:

Liang Xujia,Huang Zhonghua,Lu Liping,Tao Zhigang,Yang Bing,Li Yinlin

Abstract

With the rapid development of autonomous vehicles and mobile robotics, the desire to advance robust light detection and ranging (Lidar) detection methods for real world applications is increasing. However, this task still suffers in degraded visual environments (DVE), including smoke, dust, fog, and rain, as the aerosols lead to false alarm and dysfunction. Therefore, a novel Lidar target echo signal recognition method, based on a multi-distance measurement and deep learning algorithm is presented in this paper; neither the backscatter suppression nor the denoise functions are required. The 2-D spectrogram images are constructed by using the frequency-distance relation derived from the 1-D echo signals of the Lidar sensor individual cell in the course of approaching target. The characteristics of the target echo signal and noise in the spectrogram images are analyzed and determined; thus, the target recognition criterion is established accordingly. A customized deep learning algorithm is subsequently developed to perform the recognition. The simulation and experimental results demonstrate that the proposed method can significantly improve the Lidar detection performance in DVE.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep reinforcement learning to assess lower extremity movement intention and assist a rehabilitation exoskeleton;Disruptive Technologies in Information Sciences VIII;2024-06-06

2. Unilateral Lower Extremity Exoskeleton Utilizing Sensor Fusion Algorithms;2023 IEEE Research and Applications of Photonics in Defense Conference (RAPID);2023-09

3. Anatomical exoskeleton for movement approximation with neural networks;Disruptive Technologies in Information Sciences VII;2023-06-15

4. The Yolo-Based Multipulse Lidar (Ympl) for Target Detection in Hazy Weather;2023

5. Detection of Condensed Vehicle Gas Exhaust in LiDAR Point Clouds;2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC);2022-10-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3