Copper-Based Alloys with Optimized Hardness and High Conductivity: Research on Precipitation Hardening of Low-Alloyed Binary CuSc Alloys

Author:

Dölling JuliaORCID,Henle Ramona,Prahl UlrichORCID,Zilly Andreas,Nandi GerritORCID

Abstract

Copper alloys, combining optimized strength with high electrical and thermal conductivity, are analyzed in-depth, in order to meet the increasing requirements of today’s and tomorrow’s applications in the electrical and automotive industries. The conducted research analyzes alloys with up to 0.3 wt.% scandium, as an alloying element with limited solubility in copper. For the simultaneous enhancement of mechanical strength and conductivity, precipitation hardening is the conducted process method, accompanied by experimental and simulation-based investigations. Therefore, the influence of aging temperatures, in the range of 350 °C to 500 °C, is analyzed in combination with 25%, 50%, and 75% prior cold deformation. CuSc starts precipitating at 375 °C, without prior cold working, whereas mechanical deformation refines the growing intermetallic precipitates. Higher temperatures improve the formation of precipitates but carry the risk of overaging. The first key achievement is to use a thoroughly examined thermomechanical treatment, investigating the growth of precipitates to reach significantly higher hardness than the benchmark alloy, CuZr0.15. Furthermore, the analyzed CuSc alloys show advantages in the investigated recrystallization behavior, making them, especially, applicable for higher operating temperatures. Future research will assess ternary alloying combinations, to further scoop the latent potential of CuSc alloys.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference44 articles.

1. Copper and Copper Alloys;Davis,2008

2. Kupfer und Kupferlegierungen in der Technik;Dies,2014

3. Phase Transformations in Metals and Alloys,2021

4. Electrical conductivity versus strength in a precipitation hardened alloy

5. Materialwissenschaft und Werkstofftechnik: Physikalische Grundlagen;Gottstein,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3