Deep Neural Network for Slip Detection on Ice Surface

Author:

Wu KentORCID,He Suzy,Fernie Geoff,Roshan Fekr Atena

Abstract

Slip-induced falls are among the most common causes of major occupational injuries and economic loss in Canada. Identifying the risk factors associated with slip events is key to developing preventive solutions to reduce falls. One factor is the slip-resistance quality of footwear, which is fundamental to reducing the number of falls. Measuring footwear slip resistance with the recently developed Maximum Achievable Angle (MAA) test requires a trained researcher to identify slip events in a simulated winter environment. The human capacity for information processing is limited and human error is natural, especially in a cold environment. Therefore, to remove conflicts associated with human errors, in this paper a deep three-dimensional convolutional neural network is proposed to detect the slips in real-time. The model has been trained by a new dataset that includes data from 18 different participants with various clothing, footwear, walking directions, inclined angles, and surface types. The model was evaluated on three types of slips: Maxi-slip, midi-slip, and mini-slip. This classification is based on the slip perception and recovery of the participants. The model was evaluated based on both 5-fold and Leave-One-Subject-Out (LOSO) cross validation. The best accuracy of 97% was achieved when identifying the maxi-slips. The minimum accuracy of 77% was achieved when classifying the no-slip and mini-slip trials. The overall slip detection accuracy was 86% with sensitivity and specificity of 81% and 91%, respectively. The overall accuracy dropped by about 2% in LOSO cross validation. The proposed slip detection algorithm is not only beneficial for footwear manufactures to improve their footwear slip resistance quality, but it also has other potential applications, such as improving the slip resistance properties of flooring in healthcare facilities, commercial kitchens, and oil drilling platforms.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3