Enhancing automated lower limb rehabilitation exercise task recognition through multi-sensor data fusion in tele-rehabilitation

Author:

Ettefagh Alireza,Roshan Fekr Atena

Abstract

Abstract Background Tele-rehabilitation is the provision of physiotherapy services to individuals in their own homes. Activity recognition plays a crucial role in the realm of automatic tele-rehabilitation. By assessing patient movements, identifying exercises, and providing feedback, these platforms can offer insightful information to clinicians, thereby facilitating an improved plan of care. This study introduces a novel deep learning approach aimed at identifying lower limb rehabilitation exercises. This is achieved through the integration of depth data and pressure heatmaps. We hypothesized that combining pressure heatmaps and depth data could improve the model’s overall performance. Methods In this study, depth videos and body pressure data from an accessible online dataset were used. This dataset comprises data from 30 healthy individuals performing 7 lower limb rehabilitation exercises. To accomplish the classification task, three deep learning models were developed, all based on an established 3D-CNN architecture. The models were designed to classify the depth videos, sequences of pressure data frames, and combination of depth videos and pressure frames. The models’ performance was assessed through leave-one-subject-out and leave-multiple-subjects-out cross-validation methods. Performance metrics, including accuracy, precision, recall, and F1 score, were reported for each model. Results Our findings indicated that the model trained on the fusion of depth and pressure data showed the highest and most stable performance when compared with models using individual modality inputs. This model could effectively identify the exercises with an accuracy of 95.71%, precision of 95.83%, recall of 95.71%, and an F1 score of 95.74%. Conclusion Our results highlight the impact of data fusion for accurately classifying lower limb rehabilitation exercises. We showed that our model could capture different aspects of exercise movements using the visual and weight distribution data from the depth camera and pressure mat, respectively. This integration of data provides a better representation of exercise patterns, leading to higher classification performance. Notably, our results indicate the potential application of this model in automatic tele-rehabilitation platforms.

Funder

Mitacs Accelerate Program

Publisher

Springer Science and Business Media LLC

Reference45 articles.

1. OSH WIKI. Musculoskeletal lower limb disorders. Accessed 26 Dec 2022. https://oshwiki.osha.europa.eu/en/themes/musculoskeletal-lower-limb-disorders.

2. Kopec JA, Cibere J, Sayre EC, Li LC, Lacaille D, Esdaile JM. Descriptive epidemiology of musculoskeletal disorders in Canada: data from the global burden of disease study. Osteoarthr Cartil. 2019;27:S259. https://doi.org/10.1016/j.joca.2019.02.629.

3. Guccione AA. Physical therapy for musculoskeletal syndromes. Rheum Dis Clin North Am. 1996;22(3):551–62. https://doi.org/10.1016/s0889-857x(05)70287-8.

4. Giuseppe Musumeci AB. Topic: Role of exercise in Musculoskeletal disorders. https://www.mdpi.com/multidisciplinary_topics/Exercise_Musculoskeletal.

5. Johns Hopkins Medicine. Musculoskeletal Rehabilitation. https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/musculoskeletal-rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technological advances in lower-limb tele-rehabilitation: A review of literature;Journal of Rehabilitation and Assistive Technologies Engineering;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3