Influence of Efficient Thickness of Antireflection Coating Layer of HfO2 for Crystalline Silicon Solar Cell

Author:

Shah Deb KumarORCID,KC Devendra,Umar AhmadORCID,Algadi HassanORCID,Akhtar Mohammad ShaheerORCID,Yang O-Bong

Abstract

Anti-reflective coating (ARC) layers on silicon (Si) solar cells usually play a vital role in the amount of light absorbed into the cell and protect the device from environmental degradation. This paper reports on the thickness optimization of hafnium oxide (HfO2) as an ARC layer for high-performance Si solar cells with PC1D simulation analysis. The deposition of the HfO2 ARC layer on Si cells was carried out with a low-cost sol-gel process followed by spin coating. The thickness of the ARC layer was controlled by varying the spinning speed. The HfO2 ARC with a thickness of 70 nm possessed the lowest average reflectance of 6.33% by covering wavelengths ranging from 400–1000 nm. The different thicknesses of HfO2 ARC layers were used as input parameters in a simulation study to explore the photovoltaic characteristics of Si solar cells. The simulation findings showed that, at 70 nm thickness, Si solar cells had an exceptional external quantum efficiency (EQE) of 98% and a maximum power conversion efficiency (PCE) of 21.15%. The thicknesses of HfO2 ARC considerably impacted the photovoltaic (PV) characteristics of Si solar cells, leading to achieving high-performance solar cells.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3