Preparation of Non-Noble Metal Catalyst FeCo2O4/MoS2 for Production of Hydrogen and Oxygen by Electrochemical Decomposition of Water

Author:

Chen Zhouqian12,Li Zongmei1,Zhang Manyi3,Wang Yujia4ORCID,Zhang Siang2,Cheng Yuanyuan1

Affiliation:

1. School of Science, China University of Geosciences (Beijing), Beijing 100083, China

2. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

3. School of Foreign Languages, China University of Geosciences (Beijing), Beijing 100083, China

4. School of Economics and Management, China University of Geosciences (Beijing), Beijing 100083, China

Abstract

FeCo2O4/MoS2 binary composite catalysts were prepared by the hydrothermal method and calcination method. In this paper, the morphology and structure of the materials were characterized by means of SEM, EDS, XRD, and XPS. It was found that MoS2 has high activity and good stability in HER, and and it has more prospect than noble metal catalysts. In oxygen evolution chemical kinetics, its rich redox potential allowed it to adsorb OH− on (Co2+/Co3+, Fe2+/Fe3+) and enhanced the activity of OER. The cross-nanosheet structure of the FeCo2O4/MoS2 composite catalyst exposed more catalytic sites and accelerated charge transfer to achieve more efficient mass transfer. FeCo2O4/MoS2 as an anode and cathode was assembled into a two-electrode system in overall water splitting, which showed good catalytic activity. When the composite ratio of FeCo2O4 to MoS2 was 1:0.3, the composite catalyst had the best catalytic activity. The results show that when FeCo2O4/MoS2 is used as a cathode and anode to assemble an alkaline cell, respectively, the voltage for total water electrolysis is 1.59 V at a current density of 10 mA cm−2 in a 1 M KOH electrolyte, it can keep good stability in a 10 h test with electrolyzed water, and its current retention rate is 98.5%.

Funder

College Students’ Innovation and Entrepreneurship Training Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3