Antimicrobial Activity of Silver, Copper, and Zinc Ions/Poly(Acrylate/Itaconic Acid) Hydrogel Matrices

Author:

Tomić Simonida Lj.ORCID,Vuković Jovana S.

Abstract

The design and use of new potent and specific antimicrobial systems are of crucial importance in the medical field. This will help relieve, fight, and eradicate infections and thus improve human health. The use of metals in various forms as antimicrobial therapeutics has been known since ancient times. In this sense, polymeric hydrogel matrices as multifunctional materials and in combination with various metal forms can be a great alternative to conventional treatments for infections. Hydrogels possess high hydrophilicity, specific three-dimensional networks, fine biocompatibility, and cell adhesion and are therefore suitable as materials for the loading of active antimicrobial agents and acting in antimicrobial areas. The biocompatible nature of hydrogels’ matrices makes them a convenient starting platform to develop biocompatible, selective, active controlled-release antimicrobial materials. Hydrogels based on acrylate and itaconic acid were synthesized and loaded with silver (Ag+), copper (Cu2+), and zinc (Zn2+) ions as a controlled release and antimicrobial system to test release properties and antimicrobial activity in contact with microbes. The metal ions/hydrogel systems exhibited favorable biocompatibility, release profiles, and antimicrobial activity against methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Escherichia coli, and Candida albicans microbes, and have shown that they have the capacity to “fight” with the life-threatening infections. Antimicrobial activity depends on types of metal ions, the composition of polymeric matrices, as well as the types of microbes. Designed metal ions/poly(acrylate/itaconic acid) antimicrobial systems have shown to have good potential as antimicrobial therapeutics and suitable biomaterials for medical applications.

Publisher

MDPI AG

Subject

Inorganic Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3