Redox Targets for Phosphine–Boranes

Author:

Morocz Yonatan12ORCID,Greben Rachel E.134,Levin Leonard A.15ORCID

Affiliation:

1. Department of Ophthalmology and Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada

2. Department of Chemistry, McGill University, Montreal, QC H3A 0G4, Canada

3. Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H3A 1A3, Canada

4. Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada

5. Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada

Abstract

Understanding the complex mechanisms underlying redox-mediated biological processes is a fundamental pillar of cellular biology. We describe the identification and quantification of disulfide formation and reduction in response to phosphine–borane complexes. We illustrate the specific cysteine reduction effects of the novel phosphine–borane complex bis(3-propionic acid methyl ester) phenylphosphine–borane complex (PB1) on cultured 661W cells. A total of 1073 unique protein fragments from 628 unique proteins were identified and quantified, of which 13 were found to be statistically significant in comparison to control cells. Among the 13 identified proteins were Notch1, HDAC1, UBA1, USP7, and subunits L4 and L7 of the 60S ribosomal subunit, all of which are involved in redox or cell death-associated pathways. Leveraging the ability of tandem mass tagging mass spectrometry to provide quantitative data in an exploratory manner provides insight into the effect PB1 and other phosphine–borane compounds may have on the cysteine redoxome.

Funder

Canada Research Chairs

Canadian Institutes for Health Research

National Eye Institute

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3