Author:
Ghosh Shishir,Rana Shahed,Hollingsworth Nathan,Richmond Michael,Kabir Shariff,Hogarth Graeme
Abstract
Addition of the bulky redox-active diphosphine 1,8-bis(diphenylphosphino)naphthalene (dppn) to [Fe2(CO)6(µ-edt)] (1) (edt = 1,2-ethanedithiolate) affords [Fe2(CO)4(κ2-dppn)(µ-edt)] (3) as the major product, together with small amounts of a P–C bond cleavage product [Fe2(CO)5{κ1-PPh2(1-C10H7)}(µ-edt)] (2). The redox properties of 3 have been examined by cyclic voltammetry and it has been tested as a proton-reduction catalyst. It undergoes a reversible reduction at E1/2 = −2.18 V and exhibits two overlapping reversible oxidations at E1/2 = −0.08 V and E1/2 = 0.04 V. DFT calculations show that while the Highest Occupied Molecular Orbital (HOMO) is metal-centred (Fe–Fe σ-bonding), the Lowest Unoccupied Molecular Orbital (LUMO) is primarily ligand-based, but also contains an antibonding Fe–Fe contribution, highlighting the redox-active nature of the diphosphine. It is readily protonated upon addition of strong acids and catalyzes the electrochemical reduction of protons at Ep = −2.00 V in the presence of CF3CO2H. The catalytic current indicates that it is one of the most efficient diiron electrocatalysts for the reduction of protons, albeit operating at quite a negative potential.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献