Deciphering the Molecular Mechanism of Intramolecular Reactions from the Perspective of Bonding Evolution Theory

Author:

Adjieufack Abel IdriceORCID,Andrés Juan,Oliva Mónica,Safont Vicent SixteORCID

Abstract

The molecular mechanisms of three intramolecular rearrangements (I, the rearrangement of allyloxycycloheptatriene to yield tricyclic ketones; II, the cycloaddition of a nitrone-alkene to render two tricyclic isoxazolidines; and III, the decomposition of N-carbamoyl-L-proline in tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione plus water, or tetrahydro-1H,3H-pyrrolo[1,2-c]oxazole-1,3-dione plus ammonia) have been studied by means of the bonding evolution theory (BET). The thermal rearrangement I is composed by a sigmatropic rearrangement coupled to an intramolecular Diels–Alder reaction. The sigmatropic reaction comprises four steps: (1) rupture of an O-C single chemical bond, (2) transformation of a C-O single to double bond, (3) creation of pseudo-radical centers on carbon atoms coupled with a double C-C bond evolving to single and the other C-C double bond migration, and (4) formation of the new C-C single bond. For the Diels–Alder reaction, the process can be described as an initial formation of up to four monosynaptic V(C) basins in two successive steps, coupled with the loss of the double bond character of the three initial double bonds, followed by the consecutive formation of two new C-C bonds, with the new double C-C bond formation sensed in between the formation of the first and the second C-C bonds. For reaction II, the bond forming process is described by the depopulation of N-C and C-C double bonds with the creation of a V(N) and two V(C) monosynaptic basins, followed by an O-C and C-C bond-forming processes via the creation of V(O,C) and V(C,C) disynaptic basins. Finally, for the thermal decomposition III, the reaction mechanism for the water elimination takes place in four events which can be summarized as follows: (1) the depopulation of V(N) with the formation of C-N, (2) the rupture of the C-O bond with transfer of its population to V(O), (3) the restoration of an N nitrogen lone pair via H-N bond cleavage, and (4) the formation of O-H illustrating the water molecule release. For the case of deamination, the events (1) and (2) correspond to the breaking and forming process of H-O and H-N bonds, respectively, while last events deal with the C-O bond formation and the elimination of the NH3 molecule.

Funder

Ministerio de Ciencia, Innovación y Universidades

Generalitat Valenciana

Jaume I University

FNRS-FRFC and University of Namur

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3