Random Forest Ability in Regionalizing Hourly Hydrological Model Parameters

Author:

Saadi MohamedORCID,Oudin LudovicORCID,Ribstein PierreORCID

Abstract

This study investigated the potential of random forest (RF) algorithms for regionalizing the parameters of an hourly hydrological model. The relationships between model parameters and climate/landscape catchment descriptors were multidimensional and exhibited nonlinear features. In this case, machine-learning tools offered the option of efficiently handling such relationships using a large sample of data. The performance of the regionalized model using RF was assessed in comparison with local calibration and two benchmark regionalization approaches. Two catchment sets were considered: (1) A target pseudo-ungauged catchment set was composed of 120 urban ungauged catchments and (2) 2105 gauged American and French catchments were used for constructing the RF. By using pseudo-ungauged urban catchments, we aimed at assessing the potential of the RF to detect the specificities of the urban catchments. Results showed that RF-regionalized models allowed for slightly better streamflow simulations on ungauged sites compared with benchmark regionalization approaches. Yet, constructed RFs were weakly sensitive to the urbanization features of the catchments, which prevents their use in straightforward scenarios of the hydrological impacts of urbanization.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3