Affiliation:
1. a Basic Science Department, College of Dentistry, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq
2. b Civil Engineering Department, College of Engineering, Komar University of Science and Technology, Sulaimany, Kurdistan Region, Iraq
3. c Scientific Research Center, Soran University, Soran, Erbil, Kurdistan Region, Iraq
Abstract
ABSTRACT
Hydrological modeling is one of the most complicated tasks in sustainable water resources management, particularly in terms of predicting rainfall. Predicting rainfall is critical to build a sustainable society in terms of hydropower operations, agricultural planning, and flood control. In this study, a hybrid model based on the integration of k-nearest neighbor (KNN), XGBoost (XGB), decision tree (DCT), and Random Forest (RF) has been developed and implemented for forecasting daily rainfall for the first time at Sydney airport, Australia. Daily rainfall, temperature, evaporation, and humidity have been selected as input parameters. Three statistical measurements, namely, root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and Normalized Root Mean Square Error (NRMSE) have been utilized in order to check the accuracy of the proposed model. A sensitivity analysis was conducted, and the results indicated that for the purpose of prediction, the temperature, humidity, and evaporation were highly sensitive to the rainfall data. According to the results, the developed hybrid model was capable of predicting daily rainfall with high performance for both training and testing parts with RMSE = 0.124, R2 = 0.999, MAE = 0.007, NRMSE = 0.04 and RMSE = 1.246, R2 = 0.991, MAE = 0.109, NRMSE = 0.339, respectively.