Forecasting daily rainfall in a humid subtropical area: an innovative machine learning approach

Author:

Mohammed Miran Hikmat1ORCID,Latif Sarmad Dashti23ORCID

Affiliation:

1. a Basic Science Department, College of Dentistry, University of Sulaimani, Sulaymaniyah, Kurdistan Region, Iraq

2. b Civil Engineering Department, College of Engineering, Komar University of Science and Technology, Sulaimany, Kurdistan Region, Iraq

3. c Scientific Research Center, Soran University, Soran, Erbil, Kurdistan Region, Iraq

Abstract

ABSTRACT Hydrological modeling is one of the most complicated tasks in sustainable water resources management, particularly in terms of predicting rainfall. Predicting rainfall is critical to build a sustainable society in terms of hydropower operations, agricultural planning, and flood control. In this study, a hybrid model based on the integration of k-nearest neighbor (KNN), XGBoost (XGB), decision tree (DCT), and Random Forest (RF) has been developed and implemented for forecasting daily rainfall for the first time at Sydney airport, Australia. Daily rainfall, temperature, evaporation, and humidity have been selected as input parameters. Three statistical measurements, namely, root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and Normalized Root Mean Square Error (NRMSE) have been utilized in order to check the accuracy of the proposed model. A sensitivity analysis was conducted, and the results indicated that for the purpose of prediction, the temperature, humidity, and evaporation were highly sensitive to the rainfall data. According to the results, the developed hybrid model was capable of predicting daily rainfall with high performance for both training and testing parts with RMSE = 0.124, R2 = 0.999, MAE = 0.007, NRMSE = 0.04 and RMSE = 1.246, R2 = 0.991, MAE = 0.109, NRMSE = 0.339, respectively.

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3