Physical, Chemical and Microbiological Properties during Storage of Red Prickly Pear Juice Processed by a Continuous Flow UV-C System

Author:

Mesta-Vicuña Gabriela,Quintero-Ramos ArmandoORCID,Meléndez-Pizarro Carmen OraliaORCID,Galicia-García TomásORCID,Sánchez-Madrigal Miguel Ángel,Delgado Efrén,Ruiz-Gutiérrez Martha Graciela

Abstract

The effects of pH (3.6 and 7.0) and irradiation UV-C dose irradiation (0, 9.81, 15.13, and 31.87 mJ/cm2) on the physicochemical properties and natural microbiota of red prickly pear juice were evaluated during processing and storage. Thermal treatments were used as the control applying high temperatures for a short time (HTST 80 °C/30 s) or ultra-high temperature (UHT 130 °C/3 s). UV-C treatments applied to juices with both pHs inactivated coliforms and mesophiles with the same efficacy as thermal treatments. Yeasts and molds were inactivated at a dose of >15.13 mJ/cm2 at both pHs. The UV-C doses showed no differences in betalains, polyphenols, or antioxidant activity. However, a decrease in these compounds was observed during storage. The lowest reductions in betacyanins (11.1–16.7%) and betaxanthins (2.38–10.22%) were obtained by UV-C treatment at pH 3.6. Thermal treatments (HTST and UHT) caused a reduction greater than UV-C irradiation in betacyanins, betaxanthins, polyphenols, and antioxidant activity after treatment. However, after storage at pH 3.6, the contents of these compounds reached those of the UV-C treatments, except for polyphenols. In specific pigments, betanin retention was highest at pH 3.6 (62.26–87.24%), and its retention decreases with UV-C dose increase and storage. The indicaxanthin retentions were higher (75.85–92.27%) than those of betanin, and the reduction was mainly due to storage. The physical properties (pH, acidity, and °Brix) were not affected by treatments, except for the color. The results suggest that a dose of 15.13 mJ/cm2 of a continuous UV-C system is a non-thermal alternative for the processing of red prickly pear juice at pH 3.6, preserving its properties.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3