Abstract
Through-focus scanning optical microscopy (TSOM) is one of the recommended measurement methods in semiconductor manufacturing industry in recent years because of its rapid and nondestructive properties. As a computational imaging method, TSOM takes full advantage of the information from defocused images rather than only concentrating on focused images. In order to improve the accuracy of TSOM in nanoscale dimensional measurement, this paper proposes a two-input deep-learning TSOM method based on Convolutional Neural Network (CNN). The TSOM image and the focused image are taken as the two inputs of the network. The TSOM image is processed by three columns convolutional channels and the focused image is processed by a single convolution channel for feature extraction. Then, the features extracted from the two kinds of images are merged and mapped to the measuring parameters for output. Our method makes effective use of the image information collected by TSOM system, for which the measurement process is fast and convenient with high accuracy. The MSE of the method can reach 5.18 nm2 in the measurement of gold lines with a linewidth range of 247–1010 nm and the measuring accuracy is much higher than other deep-learning TSOM methods.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on TSOM detection method for subsurface defects of optical components;Fourteenth International Conference on Information Optics and Photonics (CIOP 2023);2023-11-24
2. Enhancing 6 nm CD Patterned Defect Classification with TSOM and CNNs;2023 34th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC);2023-05-01
3. 基于过焦扫描光学显微镜的光学元件亚表面缺陷检测方法;Acta Optica Sinica;2023