Focused and TSOM Images Two-Input Deep-Learning Method for Through-Focus Scanning Measuring

Author:

Zhang Zhange,Ren Jiajun,Peng RenjuORCID,Qu YufuORCID

Abstract

Through-focus scanning optical microscopy (TSOM) is one of the recommended measurement methods in semiconductor manufacturing industry in recent years because of its rapid and nondestructive properties. As a computational imaging method, TSOM takes full advantage of the information from defocused images rather than only concentrating on focused images. In order to improve the accuracy of TSOM in nanoscale dimensional measurement, this paper proposes a two-input deep-learning TSOM method based on Convolutional Neural Network (CNN). The TSOM image and the focused image are taken as the two inputs of the network. The TSOM image is processed by three columns convolutional channels and the focused image is processed by a single convolution channel for feature extraction. Then, the features extracted from the two kinds of images are merged and mapped to the measuring parameters for output. Our method makes effective use of the image information collected by TSOM system, for which the measurement process is fast and convenient with high accuracy. The MSE of the method can reach 5.18 nm2 in the measurement of gold lines with a linewidth range of 247–1010 nm and the measuring accuracy is much higher than other deep-learning TSOM methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on TSOM detection method for subsurface defects of optical components;Fourteenth International Conference on Information Optics and Photonics (CIOP 2023);2023-11-24

2. Enhancing 6 nm CD Patterned Defect Classification with TSOM and CNNs;2023 34th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC);2023-05-01

3. 基于过焦扫描光学显微镜的光学元件亚表面缺陷检测方法;Acta Optica Sinica;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3