Response Surface Methodology as a Tool for Optimization of Pulsed Electric Field Pretreatment and Microwave-Convective Drying of Apple

Author:

Matys AleksandraORCID,Dadan MagdalenaORCID,Witrowa-Rajchert DorotaORCID,Parniakov Oleksii,Wiktor ArturORCID

Abstract

The benefits of using hybrid drying are increasingly remarked. Microwave-convective drying (MW-CD) links the advantages of both microwave and convective drying methods and allows the negative phenomena that appear when the methods are used separately to diminish. Most importantly, reduced specific energy consumption and relatively short drying time are observed, which can be additionally decreased by the application of various preliminary treatments, e.g., pulsed electric field (PEF). Thus, the purpose of this study was to determine the impact of PEF pretreatment on the MW-CD of apples and its chosen physicochemical properties. This research was designed using response surface methodology (RSM). The first variable was microwave power (100, 200, and 300 W), and the second was specific energy input (1, 3.5, and 6 kJ/kg). Optimization responses were assumed: drying time to MR = 0.02, water activity, hygroscopicity after 72 h, rehydration ratio, relative dry matter content, total phenolic content, ability to scavenge ABTS•+ radical cations, and DPPH• radicals based on the EC50 values. The most optimal parameters were comprised of specific energy intake of 3.437 kJ/kg and microwave power of 300 W (desirability equalled 0.624), which provided the most minimized drying time and obtaining of apples with the most desired properties.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3