Finite Element Analysis of Reinforced Concrete Beams Prestressed by Fe-Based Shape Memory Alloy Bars

Author:

Yeon Yeong-MoORCID,Lee WookjinORCID,Hong Ki-Nam

Abstract

Prestressing of concrete structures using Fe-based shape memory alloys has been investigated extensively by experiments in the last decade. However, detailed investigations on the stress produced by the Fe-based shape memory alloys and its influence on concrete damage during deformation of concrete structure has not been investigated yet. In this study, the prestressing effect by Fe-based shape memory alloy bars on bending behavior of reinforced concrete beam was investigated numerically. A finite element simulation model was developed to investigated the bending responses of the beams including nonlinear material properties such as concrete cracking and crushing as well as the plastic deformation of the Fe-based shape memory alloy. The model is able to capture the bending behavior of the beam prestressed with the Fe-based shape memory alloy bars. Based on the numerical and experimental results, the prestressing effect by the shape memory alloy bars was investigated in detail. Although the developed model slightly overestimated the experimentally obtained bending load-deflection curves of the concrete beams, it was shown that the developed model can be used for an optimization study to select the best possible design parameters for prestressing the concrete beam with the Fe-based shape memory alloy bars. A possible reason for the overestimation is the idealized perfect bonding assumption between Fe-SMA and concrete used in the model, while slip at the interface occurred in the experiments.

Funder

Pusan National University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3