Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles

Author:

Giechaskiel Barouch,Melas AnastasiosORCID,Lähde Tero

Abstract

The solid particle number emissions of Diesel vehicles are very low due to the particulate filters as exhaust aftertreatment devices. However, periodically, the trapped particles are oxidized (i.e., active regeneration) in order to keep the backpressure at low levels. The solid particle number emissions during regenerations are only partly covered by the regulations. Many studies have examined the emissions during regenerations, but their contribution to the overall emissions has not been addressed adequately. Furthermore, the number concentration of volatile particles, which is not included in the regulations, can be many of orders of magnitude higher. In this study, the particulate emissions of two light-duty Euro 6 vehicles were measured simultaneously at the tailpipe and the dilution tunnel. The results showed that the weighted (i.e., considering the emissions during regeneration) solid particle number emissions remained well below the applicable limit of 6 × 1011 #/km (solid particles > 23 nm). This was true even when considering solid sub-23 nm particles. However, the weighted volatile particle number emissions were many orders of magnitude higher, reaching up to 3 × 1013 #/km. The results also confirmed the equivalency of the solid particle number results between tailpipe and dilution tunnel locations. This was not the case for the volatile particles which were strongly affected by desorption phenomena. The high number of volatiles during regenerations even interfered with the 10 nm solid particle number measurements at the dilution tunnel, even though a catalytic stripper equipped instrument was also used in the dilution tunnel.

Funder

European Commission

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3