Abstract
The solid particle number emissions of Diesel vehicles are very low due to the particulate filters as exhaust aftertreatment devices. However, periodically, the trapped particles are oxidized (i.e., active regeneration) in order to keep the backpressure at low levels. The solid particle number emissions during regenerations are only partly covered by the regulations. Many studies have examined the emissions during regenerations, but their contribution to the overall emissions has not been addressed adequately. Furthermore, the number concentration of volatile particles, which is not included in the regulations, can be many of orders of magnitude higher. In this study, the particulate emissions of two light-duty Euro 6 vehicles were measured simultaneously at the tailpipe and the dilution tunnel. The results showed that the weighted (i.e., considering the emissions during regeneration) solid particle number emissions remained well below the applicable limit of 6 × 1011 #/km (solid particles > 23 nm). This was true even when considering solid sub-23 nm particles. However, the weighted volatile particle number emissions were many orders of magnitude higher, reaching up to 3 × 1013 #/km. The results also confirmed the equivalency of the solid particle number results between tailpipe and dilution tunnel locations. This was not the case for the volatile particles which were strongly affected by desorption phenomena. The high number of volatiles during regenerations even interfered with the 10 nm solid particle number measurements at the dilution tunnel, even though a catalytic stripper equipped instrument was also used in the dilution tunnel.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献