Research on Improved Deep Convolutional Generative Adversarial Networks for Insufficient Samples of Gas Turbine Rotor System Fault Diagnosis

Author:

Liu Shucong,Wang Hongjun,Zhang Xiang

Abstract

In gas turbine rotor systems, an intelligent data-driven fault diagnosis method is an important means to monitor the health status of the gas turbine, and it is necessary to obtain sufficient fault data to train the intelligent diagnosis model. In the actual operation of a gas turbine, the collected gas turbine fault data are limited, and the small and imbalanced fault samples seriously affect the accuracy of the fault diagnosis method. Focusing on the imbalance of gas turbine fault data, an Improved Deep Convolutional Generative Adversarial Network (Improved DCGAN) suitable for gas turbine signals is proposed here, and a structural optimization of the generator and a gradient penalty improvement in the loss function are introduced to generate effective fault data and improve the classification accuracy. The experimental results of the gas turbine test bench demonstrate that the proposed method can generate effective fault samples as a supplementary set of fault samples to balance the dataset, effectively improve the fault classification and diagnosis performance of gas turbine rotors in the case of small samples, and provide an effective method for gas turbine fault diagnosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Prognostics of gas turbine engine: An integrated approach

2. Performance Assessment of a Hybrid Solid Oxide Fuel Cell-Gas Turbine Combined Heat and Power System;Ahmadi,2014

3. Gas turbine sensor validation through classification with artificial neural networks

4. Turbine fault diagnosis based on fuzzy theory and SVM;Xia,2009

5. Probabilistic failure analysis of hot gas path in a heavy-duty gas turbine using Bayesian networks

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3