Improved and accurate fault diagnostic model for gas turbine based on 2D-wavelet transform and generative adversarial network

Author:

Yao KunORCID,Wang Ying,Fan Shuangshuang,Fu Junfeng,Wan Jie,Cao Yong

Abstract

Abstract Severe working environments cause gas turbines to break down, which can directly affect their performance. Research on the diagnostic methods for gas turbine faults, such as, gas path faults and sensor failures, has always raised concerns. However, traditional fault diagnosis algorithms mostly use instantaneous data rather than time-series data, because they cannot efficiently use time-series analysis to extract fault features and improve algorithm accuracy. Problems with sparse fault samples and categories are also encountered with these algorithms. In this study, a gas turbine fault diagnostic method based on a 2D-wavelet transform and generative adversarial network (GAN) was proposed. The data preprocessing method, 2D-wavelet transform, of multiple time series images was used to obtain fault features. Based on the Fréchet inception distance, a performance evaluation index, an optimal generator built from a deep convolutional GAN model was selected to solve sparse or imbalanced datasets. The classification accuracy of the four algorithms, namely, random forest, support vector machine, convolutional neural network, and deep neural network, verified the performance of the data preprocessing and dataset building methods mentioned earlier. Compared with the original data, the 2D wavelet transform effectively improved the model accuracy. The generated samples also improved the misclassification issue caused by the imbalanced dataset; however, the ratio of real and generated samples in datasets still requires more attention.

Funder

CERNET Innovation Project

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3