MDA-Unet: A Multi-Scale Dilated Attention U-Net for Medical Image Segmentation

Author:

Amer AlyaaORCID,Lambrou TryphonORCID,Ye XujiongORCID

Abstract

The advanced development of deep learning methods has recently made significant improvements in medical image segmentation. Encoder–decoder networks, such as U-Net, have addressed some of the challenges in medical image segmentation with an outstanding performance, which has promoted them to be the most dominating deep learning architecture in this domain. Despite their outstanding performance, we argue that they still lack some aspects. First, there is incompatibility in U-Net’s skip connection between the encoder and decoder features due to the semantic gap between low-processed encoder features and highly processed decoder features, which adversely affects the final prediction. Second, it lacks capturing multi-scale context information and ignores the contribution of all semantic information through the segmentation process. Therefore, we propose a model named MDA-Unet, a novel multi-scale deep learning segmentation model. MDA-Unet improves upon U-Net and enhances its performance in segmenting medical images with variability in the shape and size of the region of interest. The model is integrated with a multi-scale spatial attention module, where spatial attention maps are derived from a hybrid hierarchical dilated convolution module that captures multi-scale context information. To ease the training process and reduce the gradient vanishing problem, residual blocks are deployed instead of the basic U-net blocks. Through a channel attention mechanism, the high-level decoder features are used to guide the low-level encoder features to promote the selection of meaningful context information, thus ensuring effective fusion. We evaluated our model on 2 different datasets: a lung dataset of 2628 axial CT images and an echocardiographic dataset of 2000 images, each with its own challenges. Our model has achieved a significant gain in performance with a slight increase in the number of trainable parameters in comparison with the basic U-Net model, providing a dice score of 98.3% on the lung dataset and 96.7% on the echocardiographic dataset, where the basic U-Net has achieved 94.2% on the lung dataset and 93.9% on the echocardiographic dataset.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3