Abstract
Remanufacturing is an activity of the circular economy model whose purpose is to keep the high value of products and materials. As opposed to the currently employed linear economic model, remanufacturing targets the extension of products and reduces the unnecessary and wasteful use of resources. Remanufacturing, along with health status monitoring, constitutes a key element for lifetime extension and reuse of large industrial equipment. The major challenge is to determine if a machine is worth remanufacturing and when is the optimal time to perform remanufacturing. The present work proposes a new predictive maintenance framework for the remanufacturing process based on a combination of remaining useful life prediction and condition monitoring methods. A hybrid-driven approach was used to combine the advantages of the knowledge model and historical data. The proposed method has been verified on the realistic run-to-failure rolling bearing degradation dataset. The experimental results combined with visualization analysis have proven the effectiveness of the proposed method.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献