Predictive Maintenance for Remanufacturing Based on Hybrid-Driven Remaining Useful Life Prediction

Author:

Zhang MingORCID,Amaitik NasserORCID,Wang Zezhong,Xu YuchunORCID,Maisuradze Alexander,Peschl Michael,Tzovaras Dimitrios

Abstract

Remanufacturing is an activity of the circular economy model whose purpose is to keep the high value of products and materials. As opposed to the currently employed linear economic model, remanufacturing targets the extension of products and reduces the unnecessary and wasteful use of resources. Remanufacturing, along with health status monitoring, constitutes a key element for lifetime extension and reuse of large industrial equipment. The major challenge is to determine if a machine is worth remanufacturing and when is the optimal time to perform remanufacturing. The present work proposes a new predictive maintenance framework for the remanufacturing process based on a combination of remaining useful life prediction and condition monitoring methods. A hybrid-driven approach was used to combine the advantages of the knowledge model and historical data. The proposed method has been verified on the realistic run-to-failure rolling bearing degradation dataset. The experimental results combined with visualization analysis have proven the effectiveness of the proposed method.

Funder

European Union

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid predictive maintenance model – study and implementation example;Production Engineering Archives;2024-09-01

2. Predictive digital twin for wind energy systems: a literature review;Energy Informatics;2024-08-08

3. Contribution of artificial intelligence to industrial maintenance in the field of mechanics;Industrial Engineering and Management;2024-06-24

4. A novel conceptual framework for predictive maintenance of medical devices in a circular healthcare supply chain;2024 International Conference on Control, Automation and Diagnosis (ICCAD);2024-05-15

5. Digital-Twin Enabled Online Remaining Useful Life Prediction of PEM Fuel Cell;2023 28th International Conference on Automation and Computing (ICAC);2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3