Remote Estimation of Water Quality Parameters of Medium- and Small-Sized Inland Rivers Using Sentinel-2 Imagery

Author:

Huangfu Kuan,Li Jian,Zhang Xinjia,Zhang Jinping,Cui Hao,Sun Quan

Abstract

In the application of quantitative remote sensing in water quality monitoring, the existence of mixed pixels greatly affects the accuracy of water quality parameter inversion, especially for narrow inland rivers. Improving the image spatial resolution and weakening the interference of mixed pixels in the image are some of the urgent problems to be solved in the study of water quality monitoring of medium- and small-sized inland rivers. We processed Sentinel-2 multispectral images using the super-resolution algorithm and generated a set of 10 m spatial resolution images with basically unchanged reflection characteristics. Both qualitative and quantitative evaluation results show that the super-resolution algorithm can weaken the influence of mixed pixels while maintaining spectral invariance. Before the application of the super-resolution algorithm, the inversion accuracy of water quality parameters in this study were as follows: for NH3-N, the R2 was 0.61, the root mean squared error (RMSE) was 0.177 and the mean absolute percentage error (MAPE) was 29.33%; for Chemical Oxygen Demand (COD), the R2 was 0.26, the RMSE was 0.756 and the MAPE was 4.62%; for Total Phosphorus (TP), the R2 was 0.69, the RMSE was 0.032 and the MAPE was 30.58%. After the application of the super-resolution algorithm, the inversion accuracy of water quality parameters in this study were as follows: for NH3-N, the R2 was 0.67, the RMSE was 0.161 and the MAPE was 25.88%; for COD, the R2 was 0.53, the RMSE was 0.546 and the MAPE was 3.36%; for TP, the R2 was 0.60, the RMSE was 0.034 and the MAPE was 24.28%. Finally, the spatial distribution of NH3-N, COD and TP was obtained by using a machine learning model. The results showed that the application of the super-resolution algorithm can effectively improve the retrieval accuracy of NH3-N, COD and TP, which illustrates the application potential of the super-resolution algorithm in water quality remote sensing quantitative monitoring.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference54 articles.

1. Assessment of Availability and Human Health Risk Posed by Arsenic Contaminated Well Waters from Timis-Bega Area, Romania;Marin;J. Anal. Methods Chem.,2017

2. COD reduction of waste water streams of active pharmaceutical ingredient – Atenolol manufacturing unit by advanced oxidation-Fenton process

3. City clusters in China: air and surface water pollution

4. Preliminary Exploring of Hyperspectral Remote Sensing Experiment for Nitrogen and Phosphorus in Water;Gong;Spectrosc. Spectr. Anal.,2008

5. Applying support vector regression to water quality modelling by remote sensing data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3