Affiliation:
1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
2. Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
3. Hefei Institutes of Collaborative Innovation for Intelligent Agriculture, Hefei 231131, China
4. Laboratory of Wetland Protection and Ecological Restoration, Anhui University, Hefei 230601, China
Abstract
Remote sensing technology applications for water quality inversion in large rivers are common. However, their application to medium/small-sized water bodies within rural areas is limited due to the low spatial resolution of remote sensing images. In this work, a typical small rural river was selected, and high-resolution unmanned aerial vehicle (UAV) multispectral images and ground monitoring data of the river were obtained. Then, a comparative analysis of three univariate regression models and nine machine learning models (Ridge Regression (RR), Support Vector Regression (SVR), Grid Search Support Vector Regression (GS-SVR), Random Forest (RF), Grid Search Random Forest (GS-RF), eXtreme Gradient Boosting (XGBoost), Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), and Catboost Regression (CBR)) for their accuracy in the prediction of turbidity (TUB), total nitrogen (TN), and total phosphorus (TP) was performed. TUB can be achieved by simple statistical regression models. The CBR model exhibited the best performance for the three index inversions on the test set evaluation metrics: R2 (0.90~0.92), RMSE (7.57 × 10−3~1.59 mg/L), MAE (0.01~1.30 mg/L), RPD (3.21~3.56), and NSE (0.84~0.92). The water pollution of the study area was closely related to its land-use pattern, excessive and irrational fertilizer application, and distribution of pollutant outlets.
Funder
National Natural Science Foundation of China
University Natural Science Research Project of Anhui Province
Open Project of the State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control
Feidong County Agricultural Non-Point Source Pollution Control Pilot Work Third Party Service Project
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献