Investigation of the iCC Framework Performance for Solving Constrained LSGO Problems

Author:

Vakhnin AlexeyORCID,Sopov EvgeniiORCID

Abstract

Many modern real-valued optimization tasks use “black-box” (BB) models for evaluating objective functions and they are high-dimensional and constrained. Using common classifications, we can identify them as constrained large-scale global optimization (cLSGO) tasks. Today, the IEEE Congress of Evolutionary Computation provides a special session and several benchmarks for LSGO. At the same time, cLSGO problems are not well studied yet. The majority of modern optimization techniques demonstrate insufficient performance when confronted with cLSGO tasks. The effectiveness of evolution algorithms (EAs) in solving constrained low-dimensional optimization problems has been proven in many scientific papers and studies. Moreover, the cooperative coevolution (CC) framework has been successfully applied for EA used to solve LSGO problems. In this paper, a new approach for solving cLSGO has been proposed. This approach is based on CC and a method that increases the size of groups of variables at the decomposition stage (iCC) when solving cLSGO tasks. A new algorithm has been proposed, which combined the success-history based parameter adaptation for differential evolution (SHADE) optimizer, iCC, and the ε-constrained method (namely ε-iCC-SHADE). We investigated the performance of the ε-iCC-SHADE and compared it with the previously proposed ε-CC-SHADE algorithm on scalable problems from the IEEE CEC 2017 Competition on constrained real-parameter optimization.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3