Variable Decomposition for Large-Scale Constrained Optimization Problems Using a Grouping Genetic Algorithm

Author:

Carmona-Arroyo Guadalupe,Quiroz-Castellanos MarcelaORCID,Mezura-Montes EfrénORCID

Abstract

Several real optimization problems are very difficult, and their optimal solutions cannot be found with a traditional method. Moreover, for some of these problems, the large number of decision variables is a major contributing factor to their complexity; they are known as Large-Scale Optimization Problems, and various strategies have been proposed to deal with them. One of the most popular tools is called Cooperative Co-Evolution, which works through a decomposition of the decision variables into smaller subproblems or variables subgroups, which are optimized separately and cooperate to finally create a complete solution of the original problem. This kind of decomposition can be handled as a combinatorial optimization problem where we want to group variables that interact with each other. In this work, we propose a Grouping Genetic Algorithm to optimize the variable decomposition by reducing their interaction. Although the Cooperative Co-Evolution approach is widely used to deal with unconstrained optimization problems, there are few works related to constrained problems. Therefore, our experiments were performed on a test benchmark of 18 constrained functions under 100, 500, and 1000 variables. The results obtained indicate that a Grouping Genetic Algorithm is an appropriate tool to optimize the variable decomposition for Large-Scale Constrained Optimization Problems, outperforming the decomposition obtained by a state-of-the-art genetic algorithm.

Publisher

MDPI AG

Subject

Applied Mathematics,Computational Mathematics,General Engineering

Reference42 articles.

1. Optimization for Engineering Design: Algorithms and Examples;Deb,2012

2. Penalty functions;Smith,1997

3. Decomposition-based evolutionary algorithm for large scale constrained problems

4. Benchmark Functions for the CEC’2008 Special Session and Competition on Large Scale Global Optimization;Tang,2007

5. A cooperative coevolutionary approach to function optimization;Potter,1994

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Constraint Consensus for Solving Large-scale Constrained Optimization Problems;2024 IEEE Congress on Evolutionary Computation (CEC);2024-06-30

2. Numerical and Evolutionary Optimization 2021;Mathematical and Computational Applications;2023-05-23

3. An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine Scheduling Problem;Mathematical and Computational Applications;2023-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3