Systemic Crop Signaling for Automatic Recognition of Transplanted Lettuce and Tomato under Different Levels of Sunlight for Early Season Weed Control

Author:

Su Wen-HaoORCID

Abstract

Conventional cultivation works to control weeds between the rows, but it ignores the weeds in crop rows which are most competitive with crops. Many vegetable crops still require manual removal of intra-row weeds not otherwise controlled by herbicides or conventional cultivation. The increasing labor costs of weed control and the continued emergences of herbicide-resistant weeds are threatening grower ability to manage weeds and maintain profitability. Intra-row weeders are commercially available but work best in low weed populations. One strategy for rapid weed crop differentiation is to utilize a machine-detectable compound to mark a crop. This paper proposes a new systemic plant signaling technology that can create machine-readable crops to facilitate the automated removal of intra-row weeds in early growth stages. Rhodamine B (Rh–B) is an efficient systemic compound to label crop plants due to its membrane permeability and unique fluorescent properties. The project involves applying solutions of Rh–B at 60 ppm to the roots of lettuce and tomato plants prior to transplantation to evaluate Rh–B persistence in plants under different levels of sunlight. Lettuce and tomato seedlings with the systemic Rh–B should be reliably recognized during their early growth stages. An intelligent robot is expected to be developed to identify the locations of plants based on the systemic signal inside. Reduced light treatments should help to alleviate the photodegradation of Rh–B in plants. After being exposed to full sunlight for 27 days, the systemic Rh–B would be detectable in tomato branches and lettuce ribs, and these plants are tolerant to root treatments with this fluorescent compound. This paper describes the project background and plan as well as the anticipated contributions of the research to allow the machine vision system to reliably identify the crop plants, and thus showing technical feasibility for outdoor weed control.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3