Automatic Evaluation of Wheat Resistance to Fusarium Head Blight Using Dual Mask-RCNN Deep Learning Frameworks in Computer Vision

Author:

Su Wen-HaoORCID,Zhang Jiajing,Yang CeORCID,Page Rae,Szinyei Tamas,Hirsch Cory D.ORCID,Steffenson Brian J.ORCID

Abstract

In many regions of the world, wheat is vulnerable to severe yield and quality losses from the fungus disease of Fusarium head blight (FHB). The development of resistant cultivars is one means of ameliorating the devastating effects of this disease, but the breeding process requires the evaluation of hundreds of lines each year for reaction to the disease. These field evaluations are laborious, expensive, time-consuming, and are prone to rater error. A phenotyping cart that can quickly capture images of the spikes of wheat lines and their level of FHB infection would greatly benefit wheat breeding programs. In this study, mask region convolutional neural network (Mask-RCNN) allowed for reliable identification of the symptom location and the disease severity of wheat spikes. Within a wheat line planted in the field, color images of individual wheat spikes and their corresponding diseased areas were labeled and segmented into sub-images. Images with annotated spikes and sub-images of individual spikes with labeled diseased areas were used as ground truth data to train Mask-RCNN models for automatic image segmentation of wheat spikes and FHB diseased areas, respectively. The feature pyramid network (FPN) based on ResNet-101 network was used as the backbone of Mask-RCNN for constructing the feature pyramid and extracting features. After generating mask images of wheat spikes from full-size images, Mask-RCNN was performed to predict diseased areas on each individual spike. This protocol enabled the rapid recognition of wheat spikes and diseased areas with the detection rates of 77.76% and 98.81%, respectively. The prediction accuracy of 77.19% was achieved by calculating the ratio of the wheat FHB severity value of prediction over ground truth. This study demonstrates the feasibility of rapidly determining levels of FHB in wheat spikes, which will greatly facilitate the breeding of resistant cultivars.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference73 articles.

1. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight

2. Hyperspectral imaging and improved feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance screening

3. Trends in food authentication;Su,2018

4. Distribution of deoxynivalenol and zearalenone in milled fractions of wheat;Pedersen;Cereal Chem.,1996

5. Fusarium poae: A pathogen that needs more attention;Stenglein;J. Plant Pathol.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3