Evaluating the Biocompatibility of an Injectable Wound Matrix in a Murine Model

Author:

Alnojeidi HatemORCID,Kilani Ruhangiz Taghi,Ghahary Aziz

Abstract

(1) Background: Developing a high-quality, injectable biomaterial that is labor-saving, cost-efficient, and patient-ready is highly desirable. Our research group has previously developed a collagen-based injectable scaffold for the treatment of a variety of wounds including wounds with deep and irregular beds. Here, we investigated the biocompatibility of our liquid scaffold in mice and compared the results to a commercially available injectable granular collagen-based product. (2) Methods: Scaffolds were applied in sub-dermal pockets on the dorsum of mice. To examine the interaction between the scaffolds and the host tissue, samples were harvested after 1 and 2 weeks and stained for collagen content using Masson’s Trichrome staining. Immunofluorescence staining and quantification were performed to assess the type and number of cells infiltrating each scaffold. (3) Results: Histological evaluation after 1 and 2 weeks demonstrated early and efficient integration of our liquid scaffold with no evident adverse foreign body reaction. This rapid incorporation was accompanied by significant cellular infiltration of stromal and immune cells into the scaffold when compared to the commercial product (p < 0.01) and the control group (p < 0.05). Contrarily, the commercial scaffold induced a foreign body reaction as it was surrounded by a capsule-like, dense cellular layer during the 2-week period, resulting in delayed integration and hampered cellular infiltration. (4) Conclusion: Results obtained from this study demonstrate the potential use of our liquid scaffold as an advanced injectable wound matrix for the management of skin wounds with complex geometries.

Funder

The Canadian Institutes of Health Research

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3