Development of an Integrated Approach for the Assessment of Climate Change Impacts on the Hydro-Meteorological Characteristics of the Mahaweli River Basin, Sri Lanka

Author:

Selvarajah HemakanthORCID,Koike Toshio,Rasmy Mohamed,Tamakawa Katsunori,Yamamoto Akio,Kitsuregawa Masuru,Zhou LiORCID

Abstract

Climate change is increasingly sensed by nations vulnerable to water-related disasters, and governments are acting to mitigate disasters and achieve sustainable development. Uncertainties in General Circulation Models’ (GCM) rainfall projections and seamless long-term hydrological simulations incorporating warming effects are major scientific challenges in assessing climate change impacts at the basin scale. Therefore, the Data Integration and Analysis System (DIAS) of Japan and the Water Energy Budget-based Rainfall-Runoff-Inundation model (WEB-RRI) were utilized to develop an integrated approach, which was then applied to the Mahaweli River Basin (MRB) in Sri Lanka to investigate climate change impacts on its hydro-meteorological characteristics. The results for the Representative Concentration Pathway (RCP8.5) scenario from four selected GCMs showed that, with an average temperature increase of 1.1 °C over the 20 years in future (2026 to 2045), the basin will experience more extreme rainfall (increase ranging 204 to 476 mm/year) and intense flood disasters and receive sufficient water in the future climate (inflow increases will range between 11 m3/s to 57 m3/s). The socio-economic damage due to flood inundation will also increase in the future climate. However, qualitatively, the overall trend of model responses showed an increasing pattern in future meteorological droughts whereas there is uncertainty in hydrological droughts. Policymakers can utilize these results and react to implementing soft or hard countermeasures for future policymaking. The approach can be implemented for climate change impact assessment of hydro-meteorology in any other river basin worldwide.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference51 articles.

1. Global Futures: Assesing the Global Economic Impacts of Environmental Change to Support Policy-Making;Roxburgh,2020

2. Policy Brief Climate Change and Water,2019

3. Estimating the Relative Uncertainties Sourced from GCMs and Hydrological Models in Modeling Climate Change Impact on Runoff

4. The Human Cost of Water Related Disasters,2015

5. A modeling approach to assess the greenhouse gas risk in Koteshwar hydropower reservoir, India

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3