Estimating the Relative Uncertainties Sourced from GCMs and Hydrological Models in Modeling Climate Change Impact on Runoff

Author:

Teng Jin1,Vaze Jai1,Chiew Francis H. S.1,Wang Biao1,Perraud Jean-Michel1

Affiliation:

1. Water for a Healthy Country National Research Flagship, CSIRO Land and Water, Canberra, Australian Capital Territory, Australia

Abstract

Abstract This paper assesses the relative uncertainties from GCMs and from hydrological models in modeling climate change impact on runoff across southeast Australia. Five lumped conceptual daily rainfall–runoff models are used to model runoff using historical daily climate series and using future climate series obtained by empirically scaling the historical climate series informed by simulations from 15 GCMs. The majority of the GCMs project a drier future for this region, particularly in the southern parts, and this is amplified as a bigger reduction in the runoff. The results indicate that the uncertainty sourced from the GCMs is much larger than the uncertainty in the rainfall–runoff models. The variability in the climate change impact on runoff results for one rainfall–runoff model informed by 15 GCMs (an about 28%–35% difference between the minimum and maximum results for mean annual, mean seasonal, and high runoff) is considerably larger than the variability in the results between the five rainfall–runoff models informed by 1 GCM (a less than 7% difference between the minimum and maximum results). The difference between the rainfall–runoff modeling results is larger in the drier regions for scenarios of big declines in future rainfall and in the low-flow characteristics. The rainfall–runoff modeling here considers only the runoff sensitivity to changes in the input climate data (primarily daily rainfall), and the difference between the hydrological modeling results is likely to be greater if potential changes in the climate–runoff relationship in a warmer and higher CO2 environment are modeled.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

1. The Australian water balance model;Boughton;Environ. Modell. Software,2004

2. Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model;Boughton;Environ. Modell. Software,2007

3. A generalized streamflow simulation system—Conceptual modeling for digital computers;Burnash,1973

4. Estimation of rainfall elasticity of streamflow in Australia.;Chiew;Hydrol. Sci. J.,2006

5. The applicability of Morton’s and Penman’s evapotranspiration estimates in rainfall–runoff modeling;Chiew;Water Resour. Bull.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3