Experimental and Numerical Investigation of Dustfall Effect on Remote Sensing Retrieval Accuracy of Chlorophyll Content

Author:

Ma Baodong,Li Xuexin,Liang Aiman,Chen Yuteng,Che Defu

Abstract

Chlorophyll is the dominant pigment in the photosynthetic light-harvesting complexes that is related to the physiological function of leaves and is responsible for light absorption and energy transfer. Dust pollution has become an environmental problem in many areas in China, indicating that accurately estimating chlorophyll content of vegetation using remote sensing for assessing the vegetation growth status in dusty areas is vital. However, dust deposited on the leaf may affect the chlorophyll content retrieval accuracy. Thus, quantitatively studying the dustfall effect is essential. Using selected vegetation indices (VIs), the medium resolution imaging spectrometer terrestrial chlorophyll index (MTCI), and the double difference index (DD), we studied the retrieval accuracy of chlorophyll content at the leaf scale under dusty environments based on a laboratory experiment and spectra simulation. First, the retrieval accuracy under different dustfall amounts was studied based on a laboratory experiment. Then, the relationship between dustfall amount and fractional dustfall cover (FDC) was experimentally analyzed for spectra simulation of dusty leaves. Based on spectral data simulated using a PROSPECT-based mixture model, the sensitivity of VIs to dust under different chlorophyll contents was analyzed comprehensively, and the MTCI was modified to reduce its sensitivity to dust. The results showed that (1) according to experimental investigation, the DD model provides low retrieval accuracy, the MTCI model is highly accurate when the dustfall amount is less than 80 g/m2, and the retrieval accuracy decreases significantly when the dustfall amount is more than 80 g/m2; (2) a logarithmic relationship exists between FDC and dustfall amount, and the PROSPECT-based mixture model can simulate the leaf spectra under different dustfall amounts and different chlorophyll contents with a root mean square error of 0.015; and (3) according to numerical investigation, MTCI’s sensitivity to dust in the chlorophyll content range of 25 to 60 μg/cm2 is lower than in other chlorophyll content ranges; DD’s sensitivity to dust was generally high throughout the whole chlorophyll content range. These findings may contribute to quantitatively understanding the dustfall effect on the retrieval of chlorophyll content and would help to accurately retrieve chlorophyll content in dusty areas using remote sensing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3