Effect of Dust Deposition on Chlorophyll Concentration Estimation in Urban Plants from Reflectance and Vegetation Indexes

Author:

Lin WenpengORCID,Yu Xumiao,Xu Di,Sun Tengteng,Sun Yue

Abstract

Using reflectance spectroscopy to monitor vegetation pigments is a crucial method to know the nutritional status, environmental stress, and phenological phase of vegetation. Defining cities as targeted areas and common greening plants as research objects, the pigment concentrations and dust deposition amounts of the urban plants were classified to explore the spectral difference, respectively. Furthermore, according to different dust deposition levels, this study compared and discussed the prediction models of chlorophyll concentration by correlation analysis and linear regression analysis. The results showed: (1) Dust deposition had interference effects on pigment concentration, leaf reflectance, and their correlations. Dust was an essential factor that must be considered. (2) The influence of dust deposition on chlorophyll—a concentration estimation was related to the selected vegetation indexes. Different modeling indicators had different sensitivity to dust. The SR705 and CIrededge vegetation indexes based on the red edge band were more suitable for establishing chlorophyll-a prediction models. (3) The leaf chlorophyll concentration prediction can be achieved by using reflectance spectroscopy data. The effect of the chlorophyll estimation model under the levels of “Medium dust” and “Heavy dust” was worse than that of “Less dust”, which meant the accumulation of dust had interference to the estimation of chlorophyll concentration. The quantitative analysis of vegetation spectrum by reflectance spectroscopy shows excellent advantages in the research and application of vegetation remote sensing, which provides an important theoretical basis and technical support for the practical application of plant chlorophyll content prediction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3