Radiometrically Consistent Climate Fingerprinting Using CrIS and AIRS Hyperspectral Observations

Author:

Wu WanORCID,Liu XuORCID,Yang Qiguang,Zhou Daniel K.ORCID,Larar Allen M.

Abstract

We introduce a novel spectral fingerprinting scheme that can be used to derive long-term atmospheric temperature and water vapor anomalies from hyperspectral infrared sounders such as Cross-track Infrared Sounder (CrIS) and Atmospheric Infrared Sounder (AIRS). It is a challenging task to derive climate trends from real satellite observations due to the difficulty of carrying out accurate cloudy radiance simulations and constructing radiometrically consistent radiative kernels. To address these issues, we use a principal component based radiative transfer model (PCRTM) to perform multiple scattering calculations of clouds and a PCRTM-based physical retrieval algorithm to derive radiometrically consistent radiative kernels from real satellite observations. The capability of including the cloud scattering calculations in the retrieval process allows the establishment of a rigorous radiometric fitting to satellite-observed radiances under all-sky conditions. The fingerprinting solution is directly obtained via an inverse relationship between the atmospheric anomalies and the corresponding spatiotemporally averaged radiance anomalies. Since there is no need to perform Level 2 retrievals on each individual satellite footprint for the fingerprinting approach, it is much more computationally efficient than the traditional way of producing climate data records from spatiotemporally averaged Level 2 products. We have applied the spectral fingerprinting method to six years of CrIS and 16 years of AIRS data to derive long-term anomaly time series for atmospheric temperature and water vapor profiles. The CrIS and AIRS temperature and water vapor anomalies derived from our spectral fingerprinting method have been validated using results from the PCRTM-based physical retrieval algorithm and the AIRS operational retrieval algorithm, respectively.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3